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a b s t r a c t

Many large graphs can be constructed from existing smaller graphs by using graph
operations, for example, the Cartesian product and the lexicographic product. Many
properties of such large graphs are closely related to those of the corresponding smaller
ones. In this short note, we give some properties of the lexicographic products of vertex-
transitive and of edge-transitive graphs. In particular, we show that the lexicographic
product of Cayley graphs is a Cayley graph.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Vertex-transitive and edge-transitive graphs are well suited for use as models for interconnection networks, as these
graphs look the same viewed from any vertex [1,2]. Thus, in such networks the same routing algorithmmay be used by each
processor. In recent years, the problem of how to use new finite groups techniques to study vertex-transitive graphs has
received a lot of attention (see e.g. [3–6]).

The Cayley graph is also an important connection pattern of interconnection networks, which has been studied
extensively, with more results obtained [7,8]. As a result, how to obtain large Cayley graphs has become an interesting topic
not only in its own right but also practically. Nedela and S̆koviera [9] studied the Cayley graph of the generalized Petersen
graphs. Xu [10] proved that the Cartesian product of two Cayley graphs is a Cayley graph. For further results and references,
the reader is referred to the recent paper [10].

Some large graphs can be constructed from existing smaller graphs by using, for example, the Cartesian product and the
lexicographic product [1,11]. Many properties of such large graphs are associated strongly with those of the corresponding
smaller ones [12].

In this note, we consider the lexicographic product of graphs. Our main objective is to study the properties of
lexicographic products of vertex-transitive and of edge-transitive graphs, and of the Cayley graphs. We show that the
lexicographic product of vertex-transitive (edge-transitive) graphs is a vertex-transitive (edge-transitive) graph and, in
particular, the lexicographic product of Cayley graphs is a Cayley graph.

2. The main results

We start by fixing some notation.
Let G = (V , E) be a simple graph with vertex set V = {v1, v2, . . . , vn} and the edge set E = {e1, e2, . . . , em}. Let Aut(G)

denote the automorphism group ofG. A graphG is vertex-transitive (resp. edge-transitive) if Aut(G) acts transitively on V (G)
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(resp. on E(G)). Let Γ be a finite group and S a subset of Γ that is closed under taking the inverse and does not contain the
identity. CayleyCΓ (S) is a graph with vertex set Γ and edge set E(CΓ (S)) = {gh : hg−1

∈ S}.
Let G1 and G2 be two graphs. The lexicographic product, denoted by G1 ⊙ G2, is a graph with vertex set V (G1) × V (G2),

and there is an edge from (u1, u2) to (v1, v2) if either there is an edge from u1 to v1 in G1, or u1 = v1 and there is an edge
from u2 to v2 in G2. For other terminology and notation not defined here, see [13].

Theorem 2.1. Let Gi (i = 1, 2, . . . , n) be vertex-transitive graphs. Then the lexicographic product graph G1 ⊙ G2 ⊙ · · · ⊙ Gn is
a vertex-transitive graph.

Proof. Suppose that G = G1 ⊙ G2 ⊙ · · · ⊙ Gn, and let x = x1x2, . . . , xn and y = y1y2, . . . , yn be any two vertices of
the graph G, where xi, yi ∈ V (Gi) (i = 1, 2, . . . , n). Since Gi is vertex-transitive, there exists σi ∈ Aut(Gi) such that
σi(xi) = yi (i = 1, 2, . . . , n). Now define the mapping φ as follows:

φ(x1x2, . . . , xn) = σ1(x1)σ2(x2), . . . , σn(xn).

It is easy to verify that φ is an element of Aut(G), and φ(x) = y. Thus, G is vertex-transitive. �

Similarly, we have the following:

Theorem 2.2. Let Gi (i = 1, 2, . . . , n) be edge-transitive graphs. Then the lexicographic product G1 ⊙ G2 ⊙ · · · ⊙ Gn is an
edge-transitive graph.

The proof of the following result is simple, but it is very important in the theory of graph embedding.

Theorem 2.3. Suppose that G = G1 ⊙G2 ⊙· · ·⊙Gn and G′
= G′

1 ⊙G′

2 ⊙· · ·⊙G′
n. If Gi is a subgraph of G′

i for i = 1, 2, . . . , n,
then G is a subgraph of G′.

From the above theorems, we know that the lexicographic product of the vertex-transitive (edge-transitive) graphs is a
vertex-transitive (edge-transitive) graph. It is well known that the Cayley graph is vertex-transitive [3], but the reverse need
not to be true (e.g., for the Petersen graph). It is then natural to ask whether the lexicographic product of Cayley graphs is a
Cayley graph. The following theorem gives an affirmative answer to this question.

Theorem 2.4. The lexicographic product of Cayley graphs is a Cayley graph.

Proof. Let Gi = CΓi(Si) be the Cayley graph for a finite group Γi = (Xi, ◦i) on the set Si; then G = G1 ⊙ G2 ⊙ · · · ⊙ Gn is the
Cayley graph CΓ (S) for the group Γ = Γ1 × Γ2 × · · · × Γn on the set

S =

n
i=1

{e1 · · · ei−1} × Qi × Qi+1 × · · · × Qn,

where

Qi =


{ei} xi = yi
Si (xi, yi) ∈ E(Gi)
Φi (xi, yi) ∉ E(Gi)

and ei is the unit element of the Γi, i = 1, 2, . . . , n.
We only need to consider the case n = 2. Then, G = G1 ⊙ G2, Γ = Γ1 × Γ2, and S = ({e1} × S2) ∪ (S1 × S2) ∪ (S1 ×

Φ2) ∪ (S1 × {e2}), for any two elements x1x2 and y1y2, where xi, yi ∈ Xi, i = 1, 2. We only need to prove that

(x1x2, y1y2) ∈ E(G) ⇐⇒ (x1x2)−1
◦ (y1y2) ∈ S.

By the definition of the lexicographic product,

(x1x2, y1y2) ∈ E(G) ⇔


(x1, y1) ∈ E(G1), otherwise
x1 = y1, (x2, y2) ∈ E(G2)

since Gi = CΓi(Si), i = 1, 2. Thus, we have

(xi, yi) ∈ E(Gi) ⇔ x−1
i ◦i yi ∈ Si.

Next, we distinguish the following cases:
Case (1):

x1 = y1, (x2, y2) ∈ E(G2) ⇔

(x1x2)−1
◦ (y1y2) = (x−1

1 x−1
2 ) ◦ (y1y2)

= (x−1
1 ◦1 y1)(x−1

2 ◦2 y2)
= (x−1

1 ◦1 x1)(x−1
2 ◦2 y2)

= e1(x−1
2 ◦2 y2) ∈ {e1} × S2 ⊆ S.
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Case (2):

x2 = y2, (x1, y1) ∈ E(G1) ⇔

(x1x2)−1
◦ (y1y2) = (x−1

1 x−1
2 ) ◦ (y1y2)

= (x−1
1 ◦1 y1)(x−1

2 ◦2 y2)
= (x−1

1 ◦1 y1)(x−1
2 ◦2 x2)

= (x−1
1 ◦1 y1)e2 ∈ S1 × {e2} ⊆ S.

Case (3):

(x1, y1) ∈ E(G1), (x2, y2) ∈ E(G2) ⇔

(x1x2)−1
◦ (y1y2) = (x−1

1 x−1
2 ) ◦ (y1y2)

= (x−1
1 ◦1 y1)(x−1

2 ◦2 y2) ∈ S1 × S2 ⊆ S.

Case (4):

(x1, y1) ∈ E(G1), (x2, y2) ∉ E(G2) ⇔

(x1x2)−1
◦ (y1y2)U = (x−1

1 x−1
2 ) ◦ (y1y2)

= (x−1
1 ◦1 y1)(x−1

2 ◦2 y2) ∈ S1 × Φ2 ⊆ S.

These show that G = G1 ⊙G2 is the Cayley graph CΓ (S) for the group Γ = Γ1 ×Γ2 on the subset S = ({e1}× S2)∪ (S1 ×

S2) ∪ (S1 × Φ2) ∪ (S1 × {e2}). This completes the proof of the theorem. �
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